EEG has been used for decades to identify neurocognitive processes related to intelligence. Evidence is accumulating for associations with neural markers of higher-order cognitive processes (e.g., working memory); however, whether associations are specific to complex processes or also relate to earlier processing stages remains unclear. Addressing these issues has implications for improving our understanding of intelligence and its neural correlates. The MMN is an ERP that is elicited when, within a series of frequent standard stimuli, rare deviant stimuli are presented. As stimuli are typically presented outside the focus of attention, the MMN is suggested to capture automatic pre-attentive discrimination processes. However, the MMN and its relation to intelligence has largely only been studied in the auditory domain, thus preventing conclusions about the involvement of automatic discrimination processes in humans' dominant sensory modality—vision. EEG was recorded from 50 healthy participants during a passive visual oddball task that presented simple sequence violations and deviations within a more complex hidden pattern. Signed area amplitudes and fractional area latencies of the visual MMN were calculated with and without Laplacian transformation. Correlations between visual MMN and intelligence (Raven's Advanced Progressive Matrices) were of negligible to small effect sizes, differed critically between measurement approaches, and Bayes Factors provided anecdotal to substantial evidence for the absence of an association. We discuss differences between the auditory and visual MMN, the implications of different measurement approaches, and offer recommendations for further research in this evolving field.