2009
DOI: 10.1007/s11269-009-9441-2
|View full text |Cite
|
Sign up to set email alerts
|

A Neurofuzzy Decision Framework for the Management of Water Distribution Networks

Abstract: Among the most important components of sustainable management strategies for water distribution networks is the ability to integrate risk analysis and asset management decision-support systems (DSS), as well as the ability to incorporate in the analysis financial and socio-political parameters that are associated with the networks in study. Presented herein is a neurofuzzy decision-support system for the performance of multi-factored risk-of-failure analysis and pipe asset management, as applied to urban water… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
33
0
4

Year Published

2011
2011
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 80 publications
(37 citation statements)
references
References 14 publications
(13 reference statements)
0
33
0
4
Order By: Relevance
“…The challenge likely to be faced by utility managers in implementing the best strategy option S4, is the question of which pipes to replace, when and where? The motivation to provide answers to this question has recently attracted a lot of research (Alvisi and Franchini 2009;Christodoulou et al 2008;Christodoulou and Deligianni 2010). Although, the multi-objective procedure for optimal pipeline rehabilitation and leakage detection scheduling proposed by Alvisi and Franchini (2009) is a valuable tool, its application in developing countries with poor financial record keeping and no clear separation of proactive and reactive budget allocations for WDSs is doubtful.…”
Section: Results Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…The challenge likely to be faced by utility managers in implementing the best strategy option S4, is the question of which pipes to replace, when and where? The motivation to provide answers to this question has recently attracted a lot of research (Alvisi and Franchini 2009;Christodoulou et al 2008;Christodoulou and Deligianni 2010). Although, the multi-objective procedure for optimal pipeline rehabilitation and leakage detection scheduling proposed by Alvisi and Franchini (2009) is a valuable tool, its application in developing countries with poor financial record keeping and no clear separation of proactive and reactive budget allocations for WDSs is doubtful.…”
Section: Results Discussionmentioning
confidence: 99%
“…Although, the multi-objective procedure for optimal pipeline rehabilitation and leakage detection scheduling proposed by Alvisi and Franchini (2009) is a valuable tool, its application in developing countries with poor financial record keeping and no clear separation of proactive and reactive budget allocations for WDSs is doubtful. Christodoulou et al (2008) and Christodoulou and Deligianni (2010) have developed a neurofuzzy decision-support system (DSS) that integrates risk analysis and asset management based on application of analytical and numerical methods, geographic information systems (GIS) and artificial neural networks (ANN). The DSS predicts risk of pipe failure and prioritizes which pipes to replace and where using GIS techniques to provide better visualization.…”
Section: Results Discussionmentioning
confidence: 99%
“…System NR składa się z tych samych bloków wnioskowania, co system rozmyty, z tym że na każdym etapie obliczenia są wykonywane przez uczące się sieci neuronowe. W bloku rozmywania każdy neuron reprezentuje funkcję przynależności poprzedzającej go reguły rozmytej [5,13,20,22]. Istnieje wiele modeli NR, które różnią się od siebie przede wszystkim sposobem pozyskiwania reguł.…”
Section: Modelowanie Neuronowo-rozmyteunclassified
“… kategoria liczby mieszkańców zagrożonych N  niska -zagrożonych do 5 000 mieszkańców, N = 1,  średnia -zagrożonych od 5 001 do 50 000 mieszkańców, N = 2,  wysoka -zagrożonych powyżej 50 000 mieszkańców, N = 3,  kategoria prawdopodobieństwa (częstotliwości) wystąpienia zdarzenia awaryjnego P  niska -mało prawdopodobne -raz na 1050 lat, P = 1,  średnia -dość prawdopodobne -raz na 110 lat, P = 2,  wysoka -prawdopodobne -110 razy w roku bądź częściej, P = 3,  kategoria skutków C  mała -dostrzegalne zmiany organoleptyczne wody, pojedyncze skargi konsumentów, straty finansowe do 5 · 10 3 EUR, C = 1,  średnia -znaczna uciążliwość organoleptyczna (odór, zmiana barwy i mętności), niedyspozycje zdrowotne konsumentów, liczne skargi, komunikaty w regionalnych mediach publicznych, straty finansowe do 10 5 EUR, C = 2,  wysoka -wymagane leczenie szpitalne osób, zaangażowanie profesjonalnych służb ratowniczych, wyniki badań organizmów wskaźni-kowych ujawniające wysoki poziom substancji toksycznych, informacje w mediach ogólnokrajowych, strata finansowa powyżej 10 5 Ocena ryzyka to porównanie wyznaczonej wartości ryzyka z wartościami kryterialnymi:…”
unclassified
“…O controle de perdas tem se tornado de grande interesse mundial devido a crescente tendência internacional para a sustentabilidade, a eficiência econômica e a proteção do ambiente. No âmbito desse objetivo, altos investimentos são realizados anualmente em detecção e reparo de vazamentos (CHRISTODOULOU; DELIGIANNI, 2010;DELGADO-GALVÁN et al, 2010;ALMEIDA, 2006;KIM;MAYS, 1994;LAMBERT;HIRNER, 2002;MOUNCE;BOXALL;MACHELL, 2010;MORAIS, 2012a).…”
Section: Introductionunclassified