Background Twelve species of Filisoma Van Cleave, 1928 are recognized parasitizing tropical and subtropical fish. Four of these species were described from kyphosid fish and it has been suggested that a co-speciation may have occurred among species of Kyphosus Lacepède, 1801 and Filisoma, which could provide valuable information about the evolution history of this host-parasite system. Purpose During a survey of the helminth fauna of Kyphosus sectatrix (Linnaeus, 1758) and Kyphosus incisor (Cuvier, 1831) (Kyphosidae Jordan, 1887) off Rio de Janeiro coast, a new species of Filisoma was found and is described herein based on morphological, genetic, and ultrastructural data. Methods Fish were obtained off Rio de Janeiro coast, Brazil. The parasites found in the intestine were measured and drawings were made with a drawing tube. Type specimens were deposited at the Helminthological Collection of Oswaldo Cruz Institute (CHIOC). The ultrastructure was studied using scanning electron microscope. The genetic analysis included the study of the partial sequences of 18S, ITS1, 5.8S and 28S rDNA, and the mitochondrial cytochrome c oxidase 1 gene (cox 1), with phylogenetic reconstructions based on the maximum likelihood analysis. Results Filisoma caudata n. sp. is characterized by a proboscis with 16-18 longitudinal rows of 38-45 hooks each. Hooks are uniform in shape dorsoventrally, gradually decreasing in size towards the base of the proboscis. Anterior hooks are 30-45 μ long, middle hooks 30-35 μ long and 5 basal transversal hooks 20-30 μ long. The new species is differentiated from the closest species Filisoma filiformis Weaver and Smales, 2013 by the size and distribution of hooks, apart from having a subterminal vulva and a curved posterior trunk end (tail) measuring 500-1,000 long. Phylogenetic analysis based on 18S, 28S rDNA and mtDNA-cox1 markers grouped the new species with Filisoma bucerium Van Cleave, 1940 and Filisoma rizalinum Tubangui and Masiluñgan, 1946 showing a close relationship between these species of Cavisomidae Meyer, 1932 and Echinorhynchidae Cobbold, 1879; the latter represented by species of Acanthocephalus Koelreuther, 1771. The new species can be differentiated from others on morphological and molecular basis. A key to the 13 species of Filisoma Van Cleave, 1928 is provided. Conclusion Filisoma caudata n. sp. is described herein based on morphological, genetic, and ultrastructural data. The topologies of obtained phylogenies suggest that species of Echinorhynchidae should be reevaluated since the family is considered paraphyletic in all analyses conducted.