2016 IEEE 7th Annual Ubiquitous Computing, Electronics &Amp; Mobile Communication Conference (UEMCON) 2016
DOI: 10.1109/uemcon.2016.7777919
|View full text |Cite
|
Sign up to set email alerts
|

A new algorithm for money laundering detection based on structural similarity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
14
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 27 publications
(16 citation statements)
references
References 6 publications
0
14
0
2
Order By: Relevance
“…Luego del análisis de la literatura, los modelos escogidos fueron: Redes bayesianas dinámicas [18], Redes neuronales de base radial [19], Máquinas de soporte vectorial [20], Clúster de dos fases [21], Maximización de la esperanza [22] y Sequence Matching [23].…”
Section: Variables a Obtenerunclassified
See 1 more Smart Citation
“…Luego del análisis de la literatura, los modelos escogidos fueron: Redes bayesianas dinámicas [18], Redes neuronales de base radial [19], Máquinas de soporte vectorial [20], Clúster de dos fases [21], Maximización de la esperanza [22] y Sequence Matching [23].…”
Section: Variables a Obtenerunclassified
“…Este modelo busca por medio del algoritmo de maximización de la esperanza, encontrar de manera iterativa el conjunto de datos que maximiza la probabilidad de ser inusuales [22].…”
Section: Maximización De La Esperanzaunclassified
“…A context for evolving an smart, discerning scheme of anti-money cleaning model to classify money laundering. Different layers play different roles during the analyzing procedure [1]. Data of Transaction layer and Account Layer are submitted from the root bank branches and have composed the primary sources.…”
Section: Related Workmentioning
confidence: 99%
“…Money laundering is defined as the process of hiding an illicit origin of dirty money and making it seem legitimate and valid (Le- Khac et al, 2016). ML can also be defined as the process of cleaning "dirty" money, which means funds collected from criminal or illegal activities including drug trafficking, illegal gambling and tax evasion (Soltani et al, 2016) and (Salehi et al, 2017). Another definition of ML is the "process of converting unaccountable money into accountable money" (Suresh et al, 2016).…”
Section: Introductionmentioning
confidence: 99%
“…ML has a negative impact on the global economy, and it is considered a serious problem discussed by countries around the world (Syed Mustapha Nazri et al, 2019). Indeed, ML is the third largest business around the world, accounting for about 2.7% of global gross domestic product (GDP) after the currency exchange and auto industries (Le- Khac et al, 2016;Soltani et al, 2016). The International Monetary Fund estimated that ML proceeds are between 2% and 5% of global GDP (Syed Mustapha Nazri et al, 2019).…”
Section: Introductionmentioning
confidence: 99%