Most power quality problems for electrical grids connected to Doubly-Fed Induction Generators (DFIGs) include flicker, variations of the RMS voltage profile, and injected harmonics because of switching in power converters. These converters have different topologies with the back-to-back (B2B) topology being the most exploited in high-powered three-phase systems. Therefore, in this article a model of a DFIG connected to the B2B power converter is proposed to which different switching techniques are implemented for interharmonic propagation studies. The switching techniques that are implemented include the Sinusoidal PWM (SPWM), the third harmonic injection PWM (THIPWM), and the space vector PWM (SVPWM), to reduce the Total Harmonic Distortion (THD) index of voltage and current in both windings of the machine. MATLAB-Simulink® software is used for modeling and simulating the B2B power converter and the switching techniques. The proposed model is validated with an experimental prototype that includes a 3-kW DFIG, a 10 HP motor, a gear-box with a transmission ratio of 4.5: 1, a B2B power converter, and a three-phase transformer connecting the system to the electrical grid. Finally, it is shown that the results obtained from the experimental tests corroborate the correct operation of the proposed model.