Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
With the increase in the environmental awareness across the oil and gas industry along with the strict environmental regulations related to drilling waste management, different practices have been applied to reduce the impact of drilling waste on the environment such as slim-hole drilling, effective solid control equipment, and environmental friendly drilling fluid additives. The main objective of these techniques is to reduce the volume of the disposed contaminated drill cuttings, therefore, reducing both impact on the environment and the cost related to drilling waste handling. This paper investigates the feasibility of using bio-degradable waste as an environmental friendly drilling fluid additives. A comprehensive experimental evaluation of different bio-degradable waste materials has been carried out to investigate their effectiveness in improving the different properties of water-based drilling fluids. These waste materials, which were prepared in-house, include but not limited to grass, corncobs, sugar cane, pomegranate peel, soya bean peel, etc. The additives were evaluated at different concentrations and mixtures and the various drilling fluids properties were measured, such as filtration, pH, and rheological properties. The filtration properties were evaluated using the standard low pressure low temperature API filter press. The results showed that some materials such as soya bean peel powder reduced the fluid loss up to 60% and improved the yield point and the gel strength up to 330 % and 640% with minor to no effect on the plastic viscosity, suggesting the applicability of using both additives as a rheology modifier and a filtration control agent. Other materials such as henna and tamarind gum outer reduced the pH dramatically, suggesting their applicability in being used as pH control agents, especially when drilling through cement. These promising results showed a good potential for these environmental friendly drilling fluid additives (EFDFA) that were generated from waste material to be used as an alternative for some of the toxic materials currently used in the industry. Using these additives, will contribute towards reducing both; the impact on the environment as well as the overall cost of drilling fluids and drilling waste handling.
With the increase in the environmental awareness across the oil and gas industry along with the strict environmental regulations related to drilling waste management, different practices have been applied to reduce the impact of drilling waste on the environment such as slim-hole drilling, effective solid control equipment, and environmental friendly drilling fluid additives. The main objective of these techniques is to reduce the volume of the disposed contaminated drill cuttings, therefore, reducing both impact on the environment and the cost related to drilling waste handling. This paper investigates the feasibility of using bio-degradable waste as an environmental friendly drilling fluid additives. A comprehensive experimental evaluation of different bio-degradable waste materials has been carried out to investigate their effectiveness in improving the different properties of water-based drilling fluids. These waste materials, which were prepared in-house, include but not limited to grass, corncobs, sugar cane, pomegranate peel, soya bean peel, etc. The additives were evaluated at different concentrations and mixtures and the various drilling fluids properties were measured, such as filtration, pH, and rheological properties. The filtration properties were evaluated using the standard low pressure low temperature API filter press. The results showed that some materials such as soya bean peel powder reduced the fluid loss up to 60% and improved the yield point and the gel strength up to 330 % and 640% with minor to no effect on the plastic viscosity, suggesting the applicability of using both additives as a rheology modifier and a filtration control agent. Other materials such as henna and tamarind gum outer reduced the pH dramatically, suggesting their applicability in being used as pH control agents, especially when drilling through cement. These promising results showed a good potential for these environmental friendly drilling fluid additives (EFDFA) that were generated from waste material to be used as an alternative for some of the toxic materials currently used in the industry. Using these additives, will contribute towards reducing both; the impact on the environment as well as the overall cost of drilling fluids and drilling waste handling.
Currently, synthetic additives are widely used in drilling fluid, but these additives have hazards, such as, toxicity, difficult to degradation, leakage and volatilization caused great influence to wellsite environment. Environmentally friendly drilling fluid has been appeared around for decade. However, because of high cost of raw materials, lack of adequate supplement and complexity of modified synthetic process, there has been no widespread industrial application in China. The majority of test wells are straight, but deviated well and highly-deviated well test is seldom reported. A series of indoor evaluation and field applications were carried out in process of modifying low cost additives to the environmentally friendly treatment agents. HTHP aging and filtration experiment to verify temperature resistance; adding sodium chloride to verify anti-salt properties; adding bentonite and cuttings recycling experiment to verify inhibition performance of slurry and mud shale; friction resistance experiment verifies that lubrication capacity meets deviated well and highly-deviated well operations; core flow experiment to verify reservoir protection performance; heavy metal, biochemical oxygen demand, chemical oxygen demand, biological toxicity analysis experiment to verify influence of the system on environment. Ability of temperature resist 120 °C, anti-salt ability reaches saturation and recovery of cuttings is more than 85%. Environmental performance of the drilling fluid system is ideal, EC50 value is 1.61×105, no biological toxicity, BOD5/CODcr is 0.11, easy biodegradation. Field application for morethan 30 wells, with beyond 20 deviated wells and highly-deviation angle more than 50 ° wells are 10. The new types downhole tools for speeding-up and controlling hole size, rotary impactor and wellbore cleaner, were used to improve mechanical penetration rate (ROP) and wellbore cleaning. After employing the environment system, the drilling fluid does not need to be transshipped and processed directly in wellsite, and well fields are restored. Drilling fluid disposal process saves the cost of artificial working, transportation and environmental management. This drilling fluid system is first applied on-site in North China, which fills the blanks and provids reliable technical support and reference examples for the subsequent replacement of drilling fluid systems used now in North China.
Multistage Fracturing (MSF) completions have been extensively used as an economical intervention means to handle extreme downhole environment. To have adequate Injectivity during hydraulic fracturing (HF), sand face permeability should be exposed to minimum formation damage. Impaired injectivity is caused by a mechanical obstruction across wellbore, tight formations (low permeability) and high heterogeneity or invaded particulates by Drill-In-Fluid (DIF) that damaged the formation. Many causes were suspected such as formation heterogeneity, false indication of completion port opening, and damage to the sand face due to drilling filter cake. Solvent treatments, acid wash and tubular slotting are the most reasonable remedies to this issue, adding more cost to the operating company. The objective of this study is to present technical procedures and methodologies followed to investigate impaired injectivity associated with MSF completions. Results and recommendations provide remedial recipes and optimized drilling and production operating procedures. Therefore, realizing a significant cost saving for operating companies. X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), and Environmental Scanning Electron Microscope (ESEM) techniques were used to analyze solid samples. HP/HT aging cells were used to conduct solubility testing of filter cake and typical barite/oil-based sludge sample. HP/HT filter press was used to study the effect of time on filter cake build-up at 300°F. HCl acid showed low solubility for typical oil-based drilling fluid sludge at 310°F. Mutual solvents dissolved the sludge partially at 300°F (e.g. ~40wt% solubility). DTPA and EDTA-based chelating agents showed higher dissolution power compared to the HCl solutions. The addition of mutual solvent to the tested chemicals increased the solubility of the sludge. Among tested chemicals, 90 % DTPA and 5 % mutual solvent provided the higher solubility. High filtration rate was noticed during HP/HT filtration test. The thickness of the filter cake increased significantly as a consequence of filtration/soaking time (e.g., up to a week). Therefore, to avoid filter cake build up and the problems associated with that, the filter cake should be removed immediately after the drilling operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.