Twelve clastic core samples from the Walloon Coal Measures, Surat Basin were tested for disintegration in artificially produced fluids varying in ionic strength. XRD data confirm the presence of smectite (water sensitive clay) in the samples. Flow-through rock disintegration experiments demonstrate that the higher the concentration of smectite and soluble plagioclase is, the quicker rock disintegrates in artificial low ionic strength fluid. Pre-soaking of rocks with high ionic strength fluid reduces rock disintegration rate in low ionic strength fluids. This is explained by very strong clay-clay and clay-sand attraction forces, evidenced through zeta-potential measurements, which inhibit rock degradation. For the studied samples it is clear that rock disintegration rate is proportional to fluid velocity. Experimental rock disintegration data are fitted by a power erosion model with two adjusted parameters: fluid ionic strength and Reynolds number. The experimental results satisfactorily agree with theoretical data. Rock disintegration rates are calculated as released particle volume per thickness of interburden layer per day at a fixed Reynolds number and low ionic strength. The laboratory work suggests that keeping wells under strong ionic fluid during shut-in times and a reduction of water production rate will preserve rock integrity for a longer period of time.