The analyses of the traditional and developed means of measuring of parameters of airspeed vector, implementing aerometric and vane, vortex or ion-mark methods of parameters of incoming airflow are performed. The article discloses the theoretical foundations of building of the original electronic sensor of direction angle and module of airspeed vector of unmanned aircraft plane with ultrasonic instrumentation channels. The functional scheme of the electronic sensor is presented, the distinctive feature of which is using of two pairs of combined transmitters and receivers of ultrasonic vibrations propagating along and against the direction of incoming flow. Informative signals of ultrasonic instrumentation channels are registered by the measuring circuit including two instrumentation channels. The analytical models are obtained for forming and processing of informative signals, determining the parameters of airspeed vector of unmanned aircraft plane by frequency, pulse time and phase informative signals of ultrasonic instrumentation channels is presented, which are processing with built-in computer. The expediency of using frequency informative signals, excluding methodological errors of measuring airspeed, has been substantiated. The possibility of measuring the direction angle of airspeed vector in range ±180°without increasing the number of ultrasonic instrumentation channels is revealed. The competitive advantages and prospects of using the electronic sensor of airspeed vector parameters on small unmanned aircraft plane are considered. The obtained results are the theoretical basis for the development, error analysis and ensuring the accuracy of the electronic sensor of parameters of airspeed vector with ultrasonic instrumentation channels for small-sized unmanned aircraft planes of various classes and purposes.