This paper covers the recent research carried out by the authors on the chemical recycling of poly(ethylene terephthalate) (PET) taken from post‐consumer soft‐drink bottles. The chemical recycling techniques used are critically reviewed and the authors' contribution is highlighted. Hydrolysis in either an alkaline or acid environment was employed in order to recover pure terephthalic acid monomer that could be repolymerized to form the polymer again. Alkaline hydrolysis was carried out in either an aqueous NaOH solution or in a non‐aqueous solution of KOH in methyl cellosolve. A phase‐transfer catalyst was introduced in alkaline hydrolysis, in order that the reaction takes place at atmospheric pressure and in mild experimental conditions. The reaction kinetics were thoroughly investigated, both experimentally and theoretically, using a simple, yet precise, kinetic model. Moreover, glycolysis was examined as an effective way for the production of secondary value‐added materials. The glycolysated PET products (oligomers) can be used as raw materials for the production of either unsaturated polyester resins (UPR) or methacrylated oligoesters (MO). UPR can subsequently be cured with styrene in ambient temperature to produce alkyd resins used as enamel paints or coatings. MO are potential monomers that can be cured either by UV irradiation or temperature to produce formulations used as coatings for wood surfaces, paints, or other applications. Thus, recycling of PET does not only serve as a partial solution to the solid‐waste problem, but also contributes to the conservation of raw petrochemical products and energy.magnified image