Internal stresses in the fiber and matrix of a unidirectional (UD) composite obtained by any micromechanics model are homogenized quantities. They must be converted into true values before an effective specifically failure and strength property of the composite can be predicted in terms of the fiber and matrix properties only. As elastic property of a material does not depend on the magnitude of its stresses, the predictions of an elastic property of the composite based on the homogenized and true stresses of the constituents are the same, concealing the fact that the elastic property should be predicted based on the true stresses as well. The conversion of all of the internal stress components has been shown in this chapter. Predictability of a total number of 12 micromechanics models for the stiffness and strength of a UD composite is assessed against the experimental data of the 9 UD composites provided in three worldwide failure exercises (WWFEs). Bridging Model exhibits overall the best accuracy in both the stiffness and the strength predictions. Further, the smallest fiber volume in a RVE (representative volume element) for an FE (finite element) approach plays a much more dominant role than other issues such as a random fiber arrangement pattern to achieve the highest simulation accuracy. Finally, consistency of a micromechanics model in calculating the internal stresses of a composite is an issue that should be taken into account. Only Bridging Model is consistent. A non-consistency implies that a full three-dimensional (3D) model should be used to predict an effective property, e.g., failure behavior of a composite even though it is only subjected to a uniaxial load, and a 3D RVE geometry should be discretized if a numerical micromechanics approach is applied.