We study the regularity of the flow $${\varvec{X}}(t,y)$$
X
(
t
,
y
)
, which represents (in the sense of Smirnov or as regular Lagrangian flow of Ambrosio) a solution $$\rho \in L^\infty ({\mathbb {R}}^{d+1})$$
ρ
∈
L
∞
(
R
d
+
1
)
of the continuity equation $$\begin{aligned} \partial _t \rho + {{\,\mathrm{div}\,}}(\rho {\varvec{b}}) = 0, \end{aligned}$$
∂
t
ρ
+
div
(
ρ
b
)
=
0
,
with $${\varvec{b}}\in L^1_t {{\,\mathrm{BV}\,}}_x$$
b
∈
L
t
1
BV
x
. We prove that $${\varvec{X}}$$
X
is differentiable in measure in the sense of Ambrosio–Malý, that is $$\begin{aligned} \frac{{\varvec{X}}(t,y+rz) - {\varvec{X}}(t,y)}{r} \underset{r \rightarrow 0}{\rightarrow } W(t,y) z \quad \text {in measure}, \end{aligned}$$
X
(
t
,
y
+
r
z
)
-
X
(
t
,
y
)
r
→
r
→
0
W
(
t
,
y
)
z
in measure
,
where the derivative W(t, y) is a BV function satisfying the ODE $$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} W(t, y) = \frac{(D {\varvec{b}})_y(\mathrm{d}t)}{J(t-,y)} W(t-, y), \end{aligned}$$
d
d
t
W
(
t
,
y
)
=
(
D
b
)
y
(
d
t
)
J
(
t
-
,
y
)
W
(
t
-
,
y
)
,
where $$(D{\varvec{b}})_y(\mathrm{d}t)$$
(
D
b
)
y
(
d
t
)
is the disintegration of the measure $$\int D {\varvec{b}}(t,\cdot ) \, \mathrm {d}t$$
∫
D
b
(
t
,
·
)
d
t
with respect to the partition given by the trajectories $${\varvec{X}}(t, y)$$
X
(
t
,
y
)
and the Jacobian J(t, y) solves $$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} J(t,y) = ({{\,\mathrm{div}\,}}{\varvec{b}})_y(\mathrm{d}t) = \mathrm {Tr}(D{\varvec{b}})_y(\mathrm{d}t). \end{aligned}$$
d
d
t
J
(
t
,
y
)
=
(
div
b
)
y
(
d
t
)
=
Tr
(
D
b
)
y
(
d
t
)
.
The proof of this regularity result is based on the theory of Lagrangian representations and proper sets introduced by Bianchini and Bonicatto in [16], on the construction of explicit approximate tubular neighborhoods of trajectories, and on estimates that take into account the local structure of the derivative of a $${{\,\mathrm{BV}\,}}$$
BV
vector field.