Abstract:Water quality data collected on a fortnightly or monthly basis are inadequate for assessment and modelling of many water quality problems as storm event samples are underrepresented or missed. This paper examines the stormflow dynamics of heavy metals (Pb, Cu, Cd and Zn) in the Nant-y-Fendrod stream, South Wales, which has been affected by 250 years of metal smelting, followed by 35 years of landscape rehabilitation measures. For storm events of contrasting (very dry and very wet) antecedent conditions in May 2000 and February 2001, respectively, temporal changes in streamwater heavy metal concentrations above and below an in-line flood detention lake are analysed. At the upstream site, peaks in total metal concentration were recorded on the rising limb for Pb (0Ð150 mg l 1 ) and Cu (0Ð038 mg l 1 ) but on the falling limb for Zn (1Ð660 mg l 1 ) and Cd (0Ð006 mg l 1 ) in the summer 2000 storm event, yielding clockwise and anticlockwise hysteretic loops respectively. In contrast, metal concentrations, although high throughout the winter storm event, were diluted somewhat during the storm peak itself. The Pb and Cu appear to be supplied by quickflow processes and transported in close association with fine sediment, whereas Zn and Cd are delivered to the channel and lake by slower subsurface seepage in dissolved form. In the winter 2001 event, antecedent soil moisture and shallow groundwater levels were anomalously high and seepage sources of dissolved metals dominated. Downstream of the lake, Pb and Cu levels and suspended sediment were high in the summer storm, but low in the winter storm, suggesting retention with deposition of fine sediment in the lake during the latter. In the winter storm, Zn and Cd levels were higher downstream than upstream of the lake, perhaps because of additional seepage inputs from the surrounding slopes, which failed to have an impact during summer. An understanding of the complex interplay of antecedent soil moisture and the dynamics of subsurface seepage pathways in relation to the three-dimensional distribution of sources is important in modelling heavy metal fluxes and levels in contaminated urban catchments.