A produce gas respiration model and fruit-stack geometric digital generation approach is used with commercial CFD software (ANSYS CFXTM) to conduct shape-level simulations of the fluid flow, heat and respiration processes that occur during the storage of produce, with the ultimate purpose of providing detailed information that can be used to develop closure coefficients for volume-averaged simulations. A digital generation procedure is used to develop an accurate representation of the shapes of the different produce. The produce shapes are then implemented into a discrete element modelling tool to generate a randomly-distributed stack of produce in a generic container, which is then utilized as a representative elementary volume (REV) for simulations of airflow and respiration. Simulations are first conducted on single pieces of produce and compared to a recently published experimental data for tomatoes and avocadoes to generate coefficients for the respiration model required for the shape-level simulations on the REV. The results of the shape-level simulation are then processed to produce coefficients that can be used for volume-averaged (porous-continuum-level) calculations, which are much more practical for simulations of large areas of storage comprised of hundreds or thousands of boxes of different commodities. The results show that the multi-level approach is a viable means for developing the simulation parameters required to study refrigeration, ripening and storage/transport of produce.