Large liquid argon (LAr) time projection chambers (TPCs) have been adopted for the Deep Underground Neutrino Experiment (DUNE) experiment's far detector, which will be composed of four 17-kton detectors situated 1.5 km underground at the Sanford Underground Research Facility. This represents a large increase in scale compared to existing experiments. Both single-and dual-phase technologies will be validated at CERN, in cryostats capable of accommodating full-size detector modules, and exposed to low-energy charged particle beams. This program, called ProtoDUNE, also allows for extensive tests of data acquisition strategies. The Front-End LInk eXchange (FELIX) readout system was initially developed within the ATLAS collaboration and is based on custom field-programmable gate array (FPGA)-based Peripheral Component Interconnect Express input/output cards, connected through point-to-point links to the detector front end and hosted in commodity servers. FELIX will be used in the single-phase ProtoDUNE setup to read the data coming from 2560 anode wires organized in a single anode plane assembly (APS) structure. With a continuous readout at a sampling rate of 2 MHz, the system must deal with an input rate of 96 Gb/s. An external trigger will preselect time windows of 5 ms with interesting activity expected inside the detector. Event building will occur for triggered events, at a target rate of 25 Hz; the readout system will form fragments from the data samples matching the time window, carry out lossless compression, and forward the data to event building nodes over 10-Gb/s Ethernet. This paper discusses the design and implementation of this readout system as well as the first operational experience.