In the past years, analyzers have been introduced to detect classes of non-terminating queries for definite logic programs. Although these non-termination analyzers have shown to be rather precise, their applicability on real-life Prolog programs is limited because most Prolog programs use non-logical features. As a first step towards the analysis of Prolog programs, this paper presents a nontermination condition for Logic Programs containing integer arithmetics. The analyzer is based on our non-termination analyzer presented at ICLP 2009. The analysis starts from a class of queries and infers a subclass of non-terminating ones. In a first phase, we ignore the outcome (success or failure) of the arithmetic operations, assuming success of all arithmetic calls. In a second phase, we characterize successful arithmetic calls as a constraint problem, the solution of which determines the non-terminating queries.Keywords : non-termination analysis, numerical computation, constraint-based approach. * Supported by the Fund for Scientific Research -FWO-project G0561-08 Abstract. In the past years, analyzers have been introduced to detect classes of non-terminating queries for definite logic programs. Although these non-termination analyzers have shown to be rather precise, their applicability on real-life Prolog programs is limited because most Prolog programs use non-logical features. As a first step towards the analysis of Prolog programs, this paper presents a non-termination condition for Logic Programs containing integer arithmetics. The analyzer is based on our non-termination analyzer presented at ICLP 2009. The analysis starts from a class of queries and infers a subclass of non-terminating ones. In a first phase, we ignore the outcome (success or failure) of the arithmetic operations, assuming success of all arithmetic calls. In a second phase, we characterize successful arithmetic calls as a constraint problem, the solution of which determines the non-terminating queries.