High-precision and robust localization is the key issue for long-term and autonomous navigation of mobile robots in industrial scenes. In this article, we propose a high-precision and robust localization system based on laser and artificial landmarks. The proposed localization system is mainly composed of three modules, namely scoring mechanism-based global localization module, laser and artificial landmark-based localization module, and relocalization trigger module. Global localization module processes the global map to obtain the map pyramid, thus improve the global localization speed and accuracy when robots are powered on or kidnapped. Laser and artificial landmark-based localization module is employed to achieve robust localization in highly dynamic scenes and high-precision localization in target areas. The relocalization trigger module is used to monitor the current localization quality in real time by matching the current laser scan with the global map and feeds it back to the global localization module to improve the robustness of the system. Experimental results show that our method can achieve robust robot localization and real-time detection of the current localization quality in indoor scenes and industrial environment. In the target area, the position error is less than 0.004 m and the angle error is less than 0.01 rad.