Abstract:A new steroidal ketone (1), with an ergosta-22,25-diene side chain, was obtained from the South China Sea marine sponge Xestospongia testudinaria. The structure of 1 was determined on the basis of detailed spectroscopic analysis and by comparison with literature. Compound 1 exhibited significant inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), a key target for the treatment of type II diabetes and obesity, with an IC50 value of 4.27 ± 0.55 μM, which is comparable with the positive control o… Show more
“…465) from a Myrmekioderma sponge and four reports of sterols and sterol esters 985-1000 (ref. [466][467][468][469] were made from Xestospongia and Topsentia sponges in 2016; compounds 994 and 995 had been synthesised previously. 470,471 Only two triterpenoid structures were published in 2016, one 1001 from Jaspis stellifera, 472 and the other 1002 from a Lipastrotethya sp.…”
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
“…465) from a Myrmekioderma sponge and four reports of sterols and sterol esters 985-1000 (ref. [466][467][468][469] were made from Xestospongia and Topsentia sponges in 2016; compounds 994 and 995 had been synthesised previously. 470,471 Only two triterpenoid structures were published in 2016, one 1001 from Jaspis stellifera, 472 and the other 1002 from a Lipastrotethya sp.…”
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
“…Table 2 reports new drugs and drug derivatives obtained by different marine organisms proposed in anti-obesity treatment [62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]. …”
Metabolic disorder has been frequently observed in chronic obstructive pulmonary disease (COPD) patients. However, the exact correlation between obesity, which is a complex metabolic disorder, and COPD remains controversial. The current study summarizes a variety of drugs from marine sources that have anti-obesity effects and proposed potential mechanisms by which lung function can be modulated with the anti-obesity activity. Considering the similar mechanism, such as inflammation, shared between obesity and COPD, the study suggests that marine derivatives that act on the adipose tissues to reduce inflammation may provide beneficial therapeutic effects in COPD subjects with high body mass index (BMI).
“…In the first phase of selection, four studies were excluded because of having not full-text access [21,22,23,24]. It is also noteworthy that two randomized double-blind controlled trials that studied the effects of virgin olive oils enriched with bioactive compounds, such as phenolic compounds and different triterpenes on MetS and oxidative stress were found in the first phase of selection [25,26].…”
The high prevalence of obesity is a serious public health problem in today’s world. Both obesity and insulin resistance favor the development of metabolic syndrome (MetS), which is associated with a number of pathologies, especially type 2 diabetes mellitus, and cardiovascular diseases. This serious problem highlights the need to search for new natural compounds to be employed in therapeutic and preventive strategies, such as oleanolic acid (OA). This research aimed to systematically review the effects of OA on the main components of MetS as well as oxidative stress in clinical trials and experimental animal studies. Databases searched included PubMed, Medline, Web of Science, Scopus, EMBASE, Cochrane, and CINAHL from 2013 to 2019. Thus, both animal studies (n = 23) and human clinical trials (n = 1) were included in our review to assess the effects of OA formulations on parameters concerning insulin resistance and the MetS components. The methodological quality assessment was performed through using the SYRCLE’s Risk of Bias for animal studies and the Jadad scale. According to the studies in our review, OA improves blood pressure levels, hypertriglyceridemia, hyperglycemia, oxidative stress, and insulin resistance. Although there is scientific evidence that OA has beneficial effects in the prevention and treatment of MetS and insulin resistance, more experimental studies and randomized clinical trials are needed to guarantee its effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.