The autogenous saphenous vein remains the graft of choice for both coronary (500,000 annually in the US) and peripheral (80,000 annually) arterial bypass procedures. Failure of arterial vein grafts (AVGs) remains a major problem, and patients with failed grafts will die or require reoperation. Intimal hyperplasia (IH) accounts for 20% to 40% of all AVG failures. It is believed that this adverse pathological response by AVGs is largely due to their abrupt exposure to the significantly elevated circumferential wall stress (CWS) associated with the arterial system. We believe that if an AVG is given an ample opportunity to adapt and remodel to the stresses of its new environment, cellular injury may be reduced, thus limiting the initiating mechanisms of IH.The goal of this work was to develop a new mechanical conditioning paradigm, in the form of a peri-adventitially placed, biodegradable polymer wrap, to safely and functionally "arterialize" AVGs in situ. The polymer wrap was tuned so that as it degraded over a desired period of time, the mechanical support offered by it was reduced and the vein was exposed to gradually increasing levels of CWS in situ.To investigate the effects of mechanical conditioning on AVGs, we utilized both our well established, validated ex vivo vascular perfusion system (EVPS) as well as an appropriate preclinical animal model. The "engineering" component of this bioengineering study was to enhance our EVPS capabilities. Enhancements were made in the form of rigorous mathematical modeling, via subspace system identification, and automatic feedback control, via proportional iv integral and derivative control, of the arterial CWS and shear stress waveform generation capabilities of the EVPS. Pairs of freshly harvested porcine internal jugular veins (PIJVs) were perfused ex vivo under several biomechanical conditions. The acute hyperplastic response of PIJVs abruptly exposed to arterial hemodynamic conditions was compared to PIJVs perfused under normal venous conditions. In an attempt to attenuate this acute hyperplastic response, an ex vivo mechanical conditioning paradigm was imposed onto the PIJVs both via manual adjustment of EVPS parameters and via an adventitially placed tuned electrospun biodegradable polymer wrap. Early markers of IH were evaluated post-perfusion, and they included vascular smooth muscle cell apoptosis, proliferation, and phenotypic modulation. Quantification of these markers via immunohistochemical techniques provided the foundation for the final stage of this work. To assess the efficacy of the tuned electrospun biodegradable polymer wrap in attenuating the development of intimal hyperplasia in AVGs, a series of preclinical studies was performed in a pig model. PIJVs abruptly exposed to arterial levels of CWS showed a significant increase in apoptosis and in the number of synthetic smooth muscle cells, as well as a decrease in proliferation. Mechanical conditioning, via both manual adjustment of the EVPS parameters and placement of the biodegradable adventitial wra...