Purpose
In traditional calibration methods of kinematics parameters of industrial robots, dozens of model parameters are identified together based on an optimization procedure. Due to different contributions of model parameter errors to the tool center point positioning error of industrial robots, obtaining good results for all model parameters is very difficult. Therefore, the purpose of this paper is to propose a sequential calibration method specifically for transmission ratio parameters, which includes reduction ratios and coupling ratios of industrial robot joints.
Design/methodology/approach
The ABB IRB 1410 industrial robot is considered as an example in this study. The transmission ratios for each joint of the robot are identified using the spatial circle fitting method based on spatial vectors, which fit the center and radius of joint rotation with the least squares optimization algorithm. In addition, a method based on the Rodrigues’ formula is designed and presented for identifying the actual coupling ratio of the robot. Subsequently, an experiment is carried out to verify the proposed sequential calibration method of transmission ratios.
Findings
In this experiment, the actual positions of the linkages before and after joint rotations are measured by a laser tracker. Accurate results of the reduction ratios and the coupling ratios are calculated, and the results are verified experimentally. The results show that by calibrating the reduction ratios and coupling ratios of the ABB robot, the rotation angle errors of the robot joints can be reduced.
Originality/value
The authors propose a sequential calibration method for transmission ratio parameters, including reduction ratios and coupling ratios of industrial robot joints. An experiment is carried out to verify this proposed sequential calibration method. This study may be beneficial for calibrating the kinematic parameters of industrial robots and improving their positioning accuracy.