The present study is based on $N(k)$-contact metric manifold bearing $\mathcal{Z}$-tensor. Certian curvature conditions $\mathcal{\overset{\star}Q}(\hat{\zeta},\mathcal{G}_{1}).\mathcal{Z^\ast}$=$0$, $\mathcal{\overset{\star}Q}(\hat{\zeta},\mathcal{G}_{1}).\mathcal{\overset{\star}Q}$=$0$, $((\hat{\zeta}\wedge_{\mathcal{Z^\ast}}\mathcal{G}_{1}).\mathcal{\overset{\star}Q})$=$0$, $\mathcal{\overset{\star}Q}.h$=$0$, $h.\mathcal{\overset{\star}Q}$=$0$ and $\mathcal{Z^\ast}(\mathcal{G}_{1},\hat{\zeta}).\mathcal{\overset{\star}R}$=$0$ on $N(k)$-contact metric manifold are also investigated. $\mathcal{Z}^\star$-recurrent and Ricci soliton on such manifold are also discussed. Finally, we provide an example of $3$-dimensional $N(k)$-contact metric manifold.