In the present work, we submit and study a new class $\mathcal{S}_{\lambda, \alpha, b}^{z, m, t}(\beta, \gamma, \omega, \mu)$ containing analytic univalent functions defined by new differential operator $D_{\lambda, \alpha}^{z, m, t}$ in the open unit disk $E=\{s \in \mathbb{C}:|s|<1\}$. We get some geometric properties, such as, coefficient estimate, growth and distortion theorems, convex set, radii of convexity and starlikeness, weighted mean, arithmetic mean and partial sums for functions belonging to the class $\mathcal{S}_{\lambda, \alpha, b}^{z, m, t}(\beta, \gamma, \omega, \mu)$.