OBJECTIVE-Rosiglitazone displays powerful antidiabetes benefits but is associated with increased body weight and adipogenesis. Keeping in mind the concept of selective peroxisome proliferator-activated receptor (PPAR)␥ modulator, the aim of this study was to characterize the properties of a new PPAR␥ ligand, S 26948, with special attention in body-weight gain.RESEARCH DESIGN AND METHODS-We used transient transfection and binding assays to characterized the binding characteristics of S 26948 and GST pull-down experiments to investigate its pattern of coactivator recruitment compared with rosiglitazone. We also assessed its adipogenic capacity in vitro using the 3T3-F442A cell line and its in vivo effects in ob/ob mice (for antidiabetes and antiobesity properties), as well as the homozygous human apolipoprotein E2 knockin mice (E2-KI) (for antiatherogenic capacity).RESULTS-S 26948 displayed pharmacological features of a high selective ligand for PPAR␥ with low potency in promoting adipocyte differentiation. It also displayed a different coactivator recruitment profile compared with rosiglitazone, being unable to recruit DRIP205 or PPAR␥ coactivator-1␣. In vivo experiments showed that S 26948 was as efficient in ameliorating glucose and lipid homeostasis as rosiglitazone, but it did not increase body and white adipose tissue weights and improved lipid oxidation in liver. In addition, S 26948 represented one of the few molecules of the PPAR␥ ligand class able to decrease atherosclerotic lesions.CONCLUSIONS-These findings establish S 26948 as a selective PPAR␥ ligand with distinctive coactivator recruitment and gene expression profile, reduced adipogenic effect, and improved biological responses in vivo.