In future content-centric networks, content is identified independently of its location. From an end-user's perspective, individual storage systems dissolve into a seemingly omnipresent structureless 'storage fog'. Content should be delivered oblivious of the network topology, using multiple storage systems simultaneously, and at minimal coordination overhead. Prior works have addressed the advantages of error correction coding for distributed storage and content delivery separately. This work takes a comprehensive approach to highlighting the tradeoff between storage overhead and transmission overhead in uncoordinated content delivery from multiple coded storage systems.Our contribution is twofold. First, we characterize the tradeoff between storage and transmission overhead when all participating storage systems employ the same code. Second, we show that the resulting stark inefficiencies can be avoided when storage systems use diverse codes. What is more, such code diversity is not just technically desirable, but presumably will be the reality in the increasingly heterogeneous networks of the future. To this end, we show that a mix of Reed-Solomon, low-density paritycheck and random linear network codes achieves close-to-optimal performance at minimal coordination and operational overhead.