2018
DOI: 10.3390/computers7040058
|View full text |Cite
|
Sign up to set email alerts
|

A New Competitive Binary Grey Wolf Optimizer to Solve the Feature Selection Problem in EMG Signals Classification

Abstract: Features extracted from the electromyography (EMG) signal normally consist of irrelevant and redundant features. Conventionally, feature selection is an effective way to evaluate the most informative features, which contributes to performance enhancement and feature reduction. Therefore, this article proposes a new competitive binary grey wolf optimizer (CBGWO) to solve the feature selection problem in EMG signals classification. Initially, short-time Fourier transform (STFT) transforms the EMG signal into tim… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
59
0
7

Year Published

2019
2019
2022
2022

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 107 publications
(66 citation statements)
references
References 31 publications
(63 reference statements)
0
59
0
7
Order By: Relevance
“…Özellik seçimi gibi ikili optimizasyon sorunları için GWO'nun ikili sürümü gerekir. Bu yaklaşıma göre, kurt pozisyonunu Denklem 6'daki gibi güncellemek için geçiş operatörünü kullanır [17,18]:…”
Section: İkili Gri Kurt Optimizasyonu (Bgwo)unclassified
See 2 more Smart Citations
“…Özellik seçimi gibi ikili optimizasyon sorunları için GWO'nun ikili sürümü gerekir. Bu yaklaşıma göre, kurt pozisyonunu Denklem 6'daki gibi güncellemek için geçiş operatörünü kullanır [17,18]:…”
Section: İkili Gri Kurt Optimizasyonu (Bgwo)unclassified
“…Burada Crossover (Y1, Y2 ve Y3), çözeltiler arasındaki geçiş işlemidir ve Y1, Y2 ve Y3, sırasıyla alfa, beta ve delta kurtlarının hareketinden etkilenen ikili vektörlerdir. BGWO'da, Y1, Y2 ve Y3 sırasıyla Denklem 7, 10 ve 13 kullanılarak tanımlanır [17,18].…”
Section: İkili Gri Kurt Optimizasyonu (Bgwo)unclassified
See 1 more Smart Citation
“…Number of wrongly classified instances Total number of instances Error  (12) where |S| is the length of feature subset, |T| is the total number of features in each dataset, Error is the classification error rate and α is the parameter in [0,1] to control the influence of classification performance and feature size. In this paper, we set α to 0.01 according to [2,3].…”
Section: Proposed Cbpso-miws For Feature Selectionmentioning
confidence: 99%
“…In the process of fitness evaluation, the dataset was randomly partitioned into 80% for the training set and 20% for the testing set [4]. Furthermore, in order to measure the effectiveness of the proposed CBPSO-MIWS, four recent and popular feature selection methods include BPSO [13,22], genetic algorithm (GA) [28], binary gravitational search algorithm (BGSA) [29] and competitive binary grey wolf optimizer (CBGWO) [12] were used in comparison. GA is an evolutionary algorithm that utilizes the selection, crossover and mutation operators to evolve solutions.…”
Section: Dataset and Parameter Settingmentioning
confidence: 99%