In the setting of fuzzy metric spaces (FMSs), a global optimization problem (GOP) obtaining the distance between two subsets of an FMS is solved by a tripled fixed-point (FP) technique here. Also, fuzzy weak tripled contractions (WTCs) for that are given. This problem was known before in metric space (MS) as a proximity point problem (PPP). The result is correct for each continuous τ−norms related to the FMS. Furthermore, a non-trivial example to illustrate the main theorem is discussed.