We study existence of positive radial solutions for the following class of quasi‐linear elliptic systems
162.0pt{−normalΔpu=f(|x|,u,v)inB,−normalΔqv=g(|x|,u,v)inB,(u,v)=(0,0)on∂B,\begin{equation*}\hspace*{13.5pc} \left\lbrace \def\eqcellsep{&}\begin{array}{rcll} -\Delta _p u &=& f(|x|,u,v) & \text{in}\quad B, \\ -\Delta _q v &=& g(|x|,u,v) & \text{in}\quad B, \\ (u,v) &=& (0,0) & \text{on}\quad \partial B, \end{array} \right. \end{equation*}where the nonlinearities f,g∈Ctrue(B×false[0,+∞false)2;0.16em[0,+∞)true)$ f, g \in C\big (B \times [0,+\infty )^2;\,[0,+\infty )\big )$ satisfy some local superlinear property at +∞$+\infty$. Here B is the unity ball in double-struckRN${\mathbb {R}}^N$ and 1