Intermediate Representations (IRs) are central to optimizing compilers as the way the program is represented may enhance or limit analyses and transformations. Suitable IRs focus on exposing the most relevant information and establish invariants that different compiler passes can rely on. While control-flow centric IRs appear to be a natural fit for imperative programming languages, analyses required by compilers have increasingly shifted to understand data dependencies and work at multiple abstraction layers at the same time. This is partially evidenced in recent developments such as the Multi-Level Intermediate Representation (MLIR) proposed by Google. However, rigorous use of data flow centric IRs in general purpose compilers has not been evaluated for feasibility and usability as previous works provide no practical implementations.
We present the Regionalized Value State Dependence Graph (RVSDG) IR for optimizing compilers. The RVSDG is a data flow centric IR where nodes represent computations, edges represent computational dependencies, and regions capture the hierarchical structure of programs. It represents programs in demand-dependence form, implicitly supports structured control flow, and models entire programs within a single IR. We provide a complete specification of the RVSDG, construction and destruction methods, as well as exemplify its utility by presenting Dead Node and Common Node Elimination optimizations. We implemented a prototype compiler and evaluate it in terms of performance, code size, compilation time, and representational overhead. Our results indicate that the RVSDG can serve as a competitive IR in optimizing compilers while reducing complexity.