In the domain of intellectual property protection, the embedding of digital watermarks has emerged as a pivotal technique for the assertion of copyright, the conveyance of confidential messages, and the endorsement of authenticity within digital media. This research delineates the implementation of a non-blind watermarking algorithm, utilizing alpha blending facilitated by discrete wavelet transform (DWT) to embed watermarks into genuine images.Thereafter, an extraction process, constituting the inverse of embedding, retrieves these watermarks. The robustness of the embedded watermark against prevalent manipulative attacks, specifically median filter, salt and pepper (SAP) noise, Gaussian noise, speckle noise, and rotation, is rigorously evaluated. The performance of the DWT-based watermarking is quantified using the peak signal-to-noise ratio (PSNR), an objective metric reflecting fidelity. It is ascertained that the watermark remains tenaciously intact under such adversarial conditions, underscoring the proposed method's suitability for applications in digital image security and copyright verification.