2020
DOI: 10.15672/hujms.494876
|View full text |Cite
|
Sign up to set email alerts
|

A new double-step method for solving complex Helmholtz equation

Abstract: We present a new double-step iteration method for solving the systems of linear equations that arise from finite difference discretizations of the complex Helmholtz equations. Convergence analysis of the method is discussed. An upper bound on the spectral radius of the iteration matrix of the method is presented and the parameter which minimizes this upper bound is computed. The proposed method is compared theoretically and numerically with some existing methods.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 18 publications
0
0
0
Order By: Relevance