The purpose of a program analysis is to compute an abstract meaning for a program which approximates its dynamic behaviour. A compositional program analysis accomplishes this task with a divide-and-conquer strategy: the meaning of a program is computed by dividing it into sub-programs, computing their meaning, and then combining the results. Compositional program analyses are desirable because they can yield scalable (and easily parallelizable) program analyses.This paper presents algebraic framework for designing, implementing, and proving the correctness of compositional program analyses. A program analysis in our framework defined by an algebraic structure equipped with sequencing, choice, and iteration operations. From the analysis design perspective, a particularly interesting consequence of this is that the meaning of a loop is computed by applying the iteration operator to the loop body. This style of compositional loop analysis can yield interesting ways of computing loop invariants that cannot be defined iteratively. We identify a class of algorithms, the so-called path-expression algorithms [35,37], which can be used to efficiently implement analyses in our framework. Lastly, we develop a theory for proving the correctness of an analysis by establishing an approximation relationship between an algebra defining a concrete semantics and an algebra defining an analysis.