Introduction: Tau proteinopathy is a pathology associated with the activation of post-translational modifications and interactions of pathophysiological cascades of neuroinflammation with hyperphosphorylation of Tau aggregates. Therefore, preference is given to agents that have properties in reducing or slowing down the processes of neuroinflammation and post-translational modifications in the brain.
Materials and Methods: The study was conducted on male and female homozygous individuals of a transgenic murine line with overexpression of mutant human Tau gene (P301S) and a background wild mouse line C57Bl/6J. To assess the progression of Tau proteinopathy, behavioral tests were used at two control time points, and the last one measured the level of neuroinflammation markers and tau-proteinopathy.
Results and Discussion: In the group of P301S mice treated with ARA-290, an improvement in the phenotypic picture of Tau proteinopathy was demonstrated compared with intact animals. In the Barnes circular maze test, mice showed a decrease in the total distance traveled and the latent time spent on the platform, which indicates a rapid entry into the shelter. In the O-shaped maze test, the group maintained a fairly high level of spontaneous exploratory behavior. In the vertical rod test, the animals recorded the best time indicators that they needed to turn and maintain balance compared to the intact group. A statistically significant decrease in the level of GSK-3β and an increase in CDK5 and PP2A were revealed, which indicates a dephosphorylating effect on Tau protein, as well as markers of neuroinflammation. NF-KB and TNF-α were significantly reduced by 57% and 32%, respectively, compared to the intact group.
Conclusion: In the model of transgenic P301S murine line with overexpression of the mutant human Tau gene, the peptide agonist of the EPOR/CD 131 heteroreceptor demonstrated neuroprotective properties, which were confirmed by indicators of behavioral tests and markers of neuroinflammation and tau-proteinopathy.