Zinc–air batteries possess advantages such as high energy density, low operational costs, and abundant reserves of raw materials, demonstrating broad prospects for applications in areas like stationary power supplies and emergency power sources. However, despite significant advancements in zinc–air battery technology, a comprehensive measurement model for zinc–air battery parameters is still lacking. This paper utilizes a gas diffusion model to separately calculate the concentration polarization of zinc–air batteries, decoupling it from electrochemical polarization and ohmic polarization, simplifying the equivalent circuit model of zinc–air batteries into a first-order RC circuit. Subsequently, based on the simplified equivalent circuit model and gas diffusion model, a zinc–air battery parameter measurement technique utilizing current pulse methods is proposed, with predictions made for the dynamic voltage response during current pulse discharges. Validation of this method was conducted through single current pulses and step current pulses. Experimental results demonstrate the method’s capability to accurately measure zinc–air battery parameters and predict the dynamic voltage response.