2021
DOI: 10.3390/w13121625
|View full text |Cite
|
Sign up to set email alerts
|

A New Evolutionary Approach to Optimal Sensor Placement in Water Distribution Networks

Abstract: The sensor placement problem is modeled as a multi-objective optimization problem with Boolean decision variables. A new multi objective evolutionary algorithm (MOEA) is proposed for approximating and analyzing the set of Pareto optimal solutions. The evaluation of the objective functions requires the execution of a hydraulic simulation model of the network. To organize the simulation results a data structure is proposed which enables the dynamic representation of a sensor placement and its fitness as a heatma… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
9
0

Year Published

2021
2021
2025
2025

Publication Types

Select...
6
1
1

Relationship

3
5

Authors

Journals

citations
Cited by 19 publications
(9 citation statements)
references
References 17 publications
0
9
0
Order By: Relevance
“…The model of the Hanoi network is composed of one reservoir, 31 consumer nodes, and 34 pipes, as shown in Figure 1. Due to its reduced topology, this network has been used as a standarized benchmark in different works [21,27,34].…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The model of the Hanoi network is composed of one reservoir, 31 consumer nodes, and 34 pipes, as shown in Figure 1. Due to its reduced topology, this network has been used as a standarized benchmark in different works [21,27,34].…”
Section: Resultsmentioning
confidence: 99%
“…In [23], a multi-objective approach to mitigate errors both in the detection and localization of leaks, considering minimum night flow conditions, is presented. Regarding the optimization of the objective function, two approaches are usually used: deterministic methods (e.g., branch and bound [24]) and metaheuristic methods, (e.g., genetic algorithms [25][26][27] and particle swarm optimization [28]). Deterministic approaches guarantee an optimal solution, but the computation time increases exponentially with the number of nodes and possible leak scenarios.…”
Section: Introductionmentioning
confidence: 99%
“…Recently, the interest on the Wasserstein distance [36] and the associated Optimal Transport theory [37] have been growing due to their successful application in many domains (e.g., imaging, signal processing and analysis, natural language process/generation, human learning, optimization, etc.) [38,39,40,41,42,43,44]. Very briefly, the Wasserstein distance allows to measure the difference between two probability distributions, α and α , independently on the values and the nature of their supports (they can be both discrete, continuous, or one continuous and one discrete).…”
Section: Bora 3 : Bo Over the Probability Simplex Via Wasserstein Se ...mentioning
confidence: 99%
“…Khorshidi et al (2019) used a decision support framework based on the game theory by considering the two goals of minimizing the detection time and the sensor cost for the optimal locations of quality sensors. Ponti et al (2021) proposed a novel evolutionary algorithm to estimate and analyze the optimal solutions of Pareto for sensor placement problems. Evaluation of the results of the new algorithm with the NSGA-II algorithm on a water distribution system through applying two objective functions demonstrated an improvement of this algorithm comparing with NSGA-II, especially for low iteration counts.…”
Section: Introductionmentioning
confidence: 99%