This version is available at https://strathprints.strath.ac.uk/61934/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
PHYSICS OF FLUIDS 29, 102003 (2017)Rarefaction cloaking: Influence of the fractal rough surface in gas slider bearings For ultra-thin gas lubrication, the surface-to-volume ratio increases dramatically when the flow geometry is scaled down to the micro/nano-meter scale, where surface roughness, albeit small, may play an important role in gas slider bearings. However, the effect of surface roughness on the pressure and load capacity (force) in gas slider bearings has been overlooked. In this paper, on the basis of the generalized Reynolds equation, we investigate the behavior of a gas slider bearing, where the roughness of the slider surface is characterized by the Weierstrass-Mandelbrot fractal function, and the mass flow rates of Couette and Poiseuille flows are obtained by deterministic solutions to the linearized Bhatnager-Gross-Krook equation. Our results show that the surface roughness reduces the local mass flow rate as compared to the smooth channel, but the amount of reduction varies for Couette and Poiseuille flows of different Knudsen numbers. As a consequence, the pressure rise and load capacity in the rough bearing become larger than the ones in the smooth bearing in the slip and early transition flow regimes, e.g., a 6% roughness could lead to an increase of 20% more bearing load capacity. However, this situation is reversed in the free-molecular flow regime, as the ratio of the mass flow rates between Couette and Poiseuille flows is smaller than that in the smooth channel. Interestingly, between the two extremes, we have found a novel "rarefaction cloaking" effect, where the load capacity of a rough bearing equals to that of a smooth bearing at a certain range of Knudsen numbers, as if the roughness does not exist.