The Caprellidea (Crustacea) have undergone an interesting morphological evolution from their ancestral gammarid-like form. Although most caprellid families have markedly reduced third and fourth pereopods (the walking thoracic limbs) and pleons (the posterior body parts), one family, Caprogammaridae, has developed pleon with swimming appendages (pleopods), whereas another family, Phtisicidae, possesses well-developed functional third and fourth pereopods. The unique character status of these families implies that there has been reacquisition or multiple losses of both pereopods and the pleon within the Caprellidea lineages. Although the Caprellidea are fascinating animals for the study of morphological evolution, the phylogenetic relationships among the Caprellidea are poorly understood. One obstacle to studying the evolution of the Caprellidea is the difficulty collecting samples of caprogammarid species. In this study, we obtained live samples of a Caprogammaridae species, and confirmed that its pleon and pleopods could perform similar locomotive functions and swimming movements as observed in gammarids. From the phylogenetic analyses on 18S ribosomal RNA gene sequences, we identified three distinct clades of Caprellidea.Ancestral state reconstruction based on the obtained phylogeny suggested that once lost, the third and fourth pereopods were regained in the Phtisicidae, while the pleon was regained in the Caprogammaridae, while we could not exclude the possibility of independent losses. In either case, the caprellid lineage underwent a quite complicated morphological evolution, and possibly the Caprellidea may be an exception to Dollo's law.