Iterative numerical schemes for solving the electrostatic partial differential equation with variable conductivity, using fast and high-order accurate direct methods for preconditioning, are compared. Two integral method schemes of this type, based on previously suggested splittings of the equation, are proposed, analyzed, and implemented. The schemes are tested for large problems on a square. Particular emphasis is paid to convergence as a function of geometric complexity in the conductivity. Differences in performance of the schemes are predicted and observed in a striking manner.