2023
DOI: 10.1360/scm-2023-0067
|View full text |Cite
|
Sign up to set email alerts
|

A new feature screening method for ultra-high-dimensional survival data based on projection correlation

Pan Yingli,
Ge Xiangyu,
Zhou Yanli

Abstract: 的确定独立筛选 (sure independence screening, SIS) 方法和基于最大边际似然估计量的确定独立筛选 (SIS with maximum marginal likelihood estimator, SIS-MMLE) 方法. 对超高维可加性模型, Fan 等 [2] 探索了一种基于 B 样条近似的非参数独立筛选 (nonparametric independence screening, NIS) 方法. 对 非参数异构误差回归模型, Wu 和 Yin [25] 提出了一种条件分位数筛选 Q-SIS (condition quantile SIS) 方 法. 对多元响应变量超高维线性模型, Lu 等 [17] 建立了一种经验似然特征筛选 MELSIS (multi-response empirical likelihood SIS) 方法. 以上这些变量筛选方法都是基于某个特定模型提出的, 所以可通过交 叉验证或信息准则的方法来选择阈值参数. 然而, 由于超高维数据的复杂程度高, 在没有排除冗余协 变量的前提下, 想要确定一个正确的模型是非常具有挑战性的. 为了避免模型的设定错误, 研… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?