This paper studies the correlation of a receiving thin dipole with an arbitrary load in both anechoic chamber (AC) and reverberation chamber (RC). In both cases, the method of moments is employed to calculate the current distributions along a thin dipole induced by external fields. In AC, a plane wave with a fixed incident angle and polarization is illuminated on the dipole; whereas in RC, the field is represented by an appropriate superposition of many incident plane waves with stochastic incident angles, polarizations and phases. Numerical results for the current distributions of a thin dipole with different loads and electrical lengths are presented and discussed in both chambers. It is demonstrated that the ratios with respect to current magnitudes at the arbitrary load of the thin dipole between AC and RC are determined by its directivity. In particular, the ratios with respect to current magnitudes along the entire dipole whose electrical length is less than half a wavelength are nearly constants regardless of the terminating load, which indicates that results obtained in both chambers are well correlated.