2023
DOI: 10.1007/s44163-023-00057-5
|View full text |Cite
|
Sign up to set email alerts
|

A new fuzzy support vector machine with pinball loss

Abstract: The fuzzy support vector machine (FSVM) assigns each sample a fuzzy membership value based on its relevance, making it less sensitive to noise or outliers in the data. Although FSVM has had some success in avoiding the negative effects of noise, it uses hinge loss, which maximizes the shortest distance between two classes and is ineffective in dealing with feature noise near the decision boundary. Furthermore, whereas FSVM concentrates on misclassification errors, it neglects to consider the critical within-cl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
references
References 30 publications
0
0
0
Order By: Relevance