2022
DOI: 10.1002/acs.3417
|View full text |Cite
|
Sign up to set email alerts
|

A new Gaussian–Student's t mixing distribution‐based Kalman filter with unknown measurement random delay rate

Abstract: In this article, a new Gaussian-Student's t mixing distribution-based Kalman filter is presented to investigate the filtering issue for linear stochastic system with unknown measurement random delay rate and non-stationary heavy-tailed measurement noise. Firstly, by employing a Bernoulli distributed variable and introducing system state extension method, the form of measurement likelihood function of double measurement noise distributions is converted from the weighted sum to an exponential product. Secondly, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 30 publications
0
2
0
Order By: Relevance
“…Through simulation experiments, it has been proven that the proposed filter has better performance and estimation accuracy in dealing with the nonlinear filtering problem of NSHTMN [15,16]. Huang et al proposed a novel robust GSTM distribution Kalman filter, which can adapt to NSHTMN by using adaptive learning of mixed probabilities, thereby improving estimation accuracy.…”
Section: Introductionmentioning
confidence: 99%
“…Through simulation experiments, it has been proven that the proposed filter has better performance and estimation accuracy in dealing with the nonlinear filtering problem of NSHTMN [15,16]. Huang et al proposed a novel robust GSTM distribution Kalman filter, which can adapt to NSHTMN by using adaptive learning of mixed probabilities, thereby improving estimation accuracy.…”
Section: Introductionmentioning
confidence: 99%
“…In [19], a risk-sensitive KF (RSKF) is proposed by minimizing the expectation of the accumulated exponential quadratic error for system with one-step randomly delayed measurement with unknown probability and uncertain model. In recent years, the use of variational Bayesian (VB) method to identify unknown parameters has been widely studied [20][21][22][23], such as the identification of Student's t noise parameters [24][25][26]. In [27], an improved KF with one-step randomly delayed measurement is proposed.…”
Section: Introductionmentioning
confidence: 99%