Laser shock peening (LSP) is a formidable cold working surface treatment that provides high-energy precision to enhance the mechanical properties of materials. This paper delves into the intricacies of the LSP process, offering insights into its methodology and the simulation thereof through the finite element method. This review critically examines various points, such as laser energy, overlapping of shots, effect of LSP on residual stress, effect of LSP on grain refinement, and algorithms for simulation extrapolated from finite element analyses conducted by researchers, shedding light on the nuanced considerations integral to this technique. As the significance of LSP continues to grow, the collective findings underscore its potential as a transformative technology for fortifying materials against mechanical stress and improving their overall performance and longevity. The discourse encapsulates the evolving landscape of the LSP, emphasizing the pivotal role played by finite element analysis in advancing our understanding and application of this innovative surface treatment.