Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
During the mining process of impact-prone coal seams, drilling pressure relief can reduce the impact propensity of the coal seam, but it also reduces the integrity and strength of the coal mass at the side of the roadway. Therefore, studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks. To achieve this aim, seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine. Besides, the stress–strain curves, acoustic emission signals, DIC strain fields and other data were collected during the experiments. Furthermore, the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed. The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one, and the decline is positively corelated to the diameter of the drilled hole. After hole filling, the strain concentration degree around the drilled hole is lowered to a certain degree, and polyurethane filling has a more remarkable effect than cement filling. Meanwhile, hole filling can enhance the strength and deformation resistance of coal. Hole drilling can accelerate the release of accumulated elastic strain energy, turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones, whereas hole filling can reduce the intensity of energy release. The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes. Moreover, the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
During the mining process of impact-prone coal seams, drilling pressure relief can reduce the impact propensity of the coal seam, but it also reduces the integrity and strength of the coal mass at the side of the roadway. Therefore, studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks. To achieve this aim, seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine. Besides, the stress–strain curves, acoustic emission signals, DIC strain fields and other data were collected during the experiments. Furthermore, the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed. The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one, and the decline is positively corelated to the diameter of the drilled hole. After hole filling, the strain concentration degree around the drilled hole is lowered to a certain degree, and polyurethane filling has a more remarkable effect than cement filling. Meanwhile, hole filling can enhance the strength and deformation resistance of coal. Hole drilling can accelerate the release of accumulated elastic strain energy, turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones, whereas hole filling can reduce the intensity of energy release. The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes. Moreover, the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
This paper takes the ZF3806 working face of Shuiliandong Coal Mine in Binxian County, Shaanxi Province as the engineering background. Aiming at the problems of the development of surrounding rock cracks and roof breakage encountered in the process of roadway excavation and support and based on the composite beam theory, the method of layered grouting reinforcement of roadways is proposed according to the deformation and failure of the roadway roof and the internal drilling conditions. At the same time, combined with the splitting grouting mechanism, the roadway is strengthened and supported by layered grouting of “shallow bolt grouting + deep cable grouting.” The “shallow” and “deep” form a complete and stable composite beam support structure. After grouting, the bending moments of “shallow” and “deep” support beams decrease by 20.78 × 106 N·m and 26.50 × 106 N·m, respectively. The support scheme is applied to the field test, and the grouting effect is analyzed and monitored. The research results show the layered grouting support scheme of “shallow bolt grouting + deep cable grouting” can significantly improve the structural integrity of the roadway roof. The displacement of the two sides is within the controllable range, and the support role of the bolt and cable is entirely played through grouting. The roof displacement of the roadway is reduced by 65% on average, and the bolt failure and steel belt fracture are significantly reduced, which effectively controls the deformation and damage of the roadway and reduces the maintenance cost of the roadway while ensuring safe mining. The study’s findings could be useful in treating broken surrounding rock in other coal mine roadways.
Real-time drilling depressurization technology is widely used in the prevention and control of dynamic disasters, such as deep-seated rock burst. However, current coal- and rock-loading tests under drilling conditions seldom account for real-time issues associated with drilling, thus failing to fully reflect the actual stress state of the surrounding rock during the implementation of drilling depressurization technology. Therefore, this study designed and implemented a uniaxial loading scheme for coal samples incorporating real-time-drilling characteristics. The results indicate a significant reduction in the uniaxial compressive strength (RC), elastic energy index (WET), and impact energy index (KE) of the samples post-drilling. These parameters show a clear decreasing trend with increasing axial stress during real-time drilling. The weakening effect of impact tendency following real-time drilling depressurization is significant, and the depressurization effect is pronounced. The RC, WET, and KE of each real-time-drilled sample exhibit a notable decrease with increasing drilling stress, with the reduction rate significantly diminishing after the drilling stress reaches 20% of the peak strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.