Voice Activity Detection (VAD) is an essential task in expert systems that rely on oral interfaces. The VAD module detects the presence of human speech and separates speech segments from silences and non-speech noises. The most popular current on-line VAD systems are based on adaptive parameters which seek to cope with varying channel and noise conditions. The main disadvantages of this approach are the need for some initialisation time to properly adjust the parameters to the incoming signal and uncertain performance in the case of poor estimation of the initial parameters. In this paper we propose a novel online VAD based only on previous training which does not introduce any delay.The technique is based on a strategy that we have called Multi-Normalisation