2007
DOI: 10.4064/fm197-0-12
|View full text |Cite
|
Sign up to set email alerts
|

A new invariant and parametric connected sum of embeddings

Abstract: Abstract.We define an isotopy invariant of embeddings N → R m of manifolds into Euclidean space. This invariant together with the α-invariant of Haefliger-Wu is complete in the dimension range where the α-invariant could be incomplete. We also define parametric connected sum of certain embeddings (analogous to surgery). This allows us to obtain new completeness results for the α-invariant and the following estimation of isotopy classes of embeddings. In the piecewise-linear category, for a (3n − 2m + 2)-connec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
18
0
3

Year Published

2008
2008
2020
2020

Publication Types

Select...
8

Relationship

4
4

Authors

Journals

citations
Cited by 14 publications
(21 citation statements)
references
References 20 publications
0
18
0
3
Order By: Relevance
“…A natural next step (after link theory and the classification of embeddings of highly-connected manifolds) towards classification of embeddings of arbitrary manifolds is the classification of knotted tori, i.e., embeddings S p × S q → S m . The classification of knotted tori gives some insight or even precise information concerning arbitrary manifolds [21]; see also Theorem 4.1 below. Many interesting examples of embeddings are knotted tori [13,18,20,15].…”
Section: Knotted Torimentioning
confidence: 99%
“…A natural next step (after link theory and the classification of embeddings of highly-connected manifolds) towards classification of embeddings of arbitrary manifolds is the classification of knotted tori, i.e., embeddings S p × S q → S m . The classification of knotted tori gives some insight or even precise information concerning arbitrary manifolds [21]; see also Theorem 4.1 below. Many interesting examples of embeddings are knotted tori [13,18,20,15].…”
Section: Knotted Torimentioning
confidence: 99%
“…The sum operation on E m (S p × S q ) is 'S p -parametric connected sum', cf. [Sk07,Sk10', MAP], [Sk17,Theorem 8]. See Group Structure Lemma 2.2, Remark 2.3 on comparison to previous work and Remark 2.4 on the dimension restrictions.…”
Section: Definitions Of [·]mentioning
confidence: 94%
“…Рассмот-рение заузленных торов -следующий естественный шаг после исследования зацеплений по направлению к классификации вложений произвольных много-образий (см. [14], [15]) согласно теореме о разбиении на ручки. Данная темати-ка также заслуживает внимания благодаря многим интересным примерам (см.…”
Section: зацепления классификация зацеплений Sunclassified