Complexed poly(3-hydroxyalkanoate)s (cPHAs), one of two types of natural PHAs, occur in both prokaryotes and eukaryotes as a complex with biomacromolecules and could be involved in various physiological functions. In this study, a cPHA-component derived from a complex with calcium polyphosphate was isolated from sugar beet (Beta vulgaris L.) and determined to be a homopolymer composed of 3-hydroxybutyrate. MALDI MS provided the number-average molecular weight (Mn = 9,124 Da) and polydispersity index (PDI = 1.01), showing that beet cPHA has a slightly lower molecular mass than the known Escherichia coli cPHA. In addition, the structural analysis of both end groups showed that (i) 100 mol-% of the carboxyl end is free, while about 30 mol-% of the hydroxyl end is free and about 70 mol-% masked and (ii) the end hydroxyl group is masked by at least six identified short-chain alkanoic and alkanedioic acids. Based on such end-group characteristics, the polymerization mechanism of beet cPHA is discussed.