Studies of rare genomic marker systems suggest that Myzostomida are a subgroup of Annelida and phylogenomic analyses indicate an early divergence of this taxon within annelids. However, adult myzostomids show a highly specialized body plan, which lacks typical annelid features, such as external body annulation, coelomic cavities with metanephridia, and segmental ganglia of the nervous system. The putative loss of these features might be due to the parasitic/symbiotic lifestyle of myzostomids associated with echinoderms. In contrast, the larval anatomy and adult locomotory system resemble those of annelids. To clarify whether the myoanatomy of myzostomids reflects their relationship to annelids, we analyzed the distribution of f-actin, a common component of muscle fibers, in specimens of Myzostoma cirriferum using phalloidin-rhodamine labeling in conjunction with confocal laser-scanning microscopy. Our data reveal that the musculature of the myzostomid body comprises an outer circular layer, an inner longitudinal layer, numerous dorsoventral muscles, and prominent muscles of the parapodial complex. These features correspond well with the common organization of the muscular system in Annelida. In contrast to other annelids, however, several elements of the muscular system in M. cirriferum, including the musculature of the body wall, and the parapodial flexor muscles, exhibit radial symmetry overlaying a bilateral body plan. These findings are in line with the annelid affinity of myzostomids and suggest that the apparent partial radial symmetry of M. cirriferum arose secondarily in this species. Based on our data, we provide a scenario on the rearrangements of muscle fibers that might have taken place in the lineage leading to this species.