cyto-Actin and ␥cyto-actin are ubiquitous proteins thought to be essential building blocks of the cytoskeleton in all non-muscle cells. Despite this widely held supposition, we show that ␥cyto-actin null mice (Actg1 ؊/؊ ) are viable. However, they suffer increased mortality and show progressive hearing loss during adulthood despite compensatory up-regulation of cyto-actin. The surprising viability and normal hearing of young Actg1 ؊/؊ mice means that cyto-actin can likely build all essential non-muscle actin-based cytoskeletal structures including mechanosensory stereocilia of hair cells that are necessary for hearing. Although ␥cyto-actin-deficient stereocilia form normally, we found that they cannot maintain the integrity of the stereocilia actin core. In the wild-type, ␥cyto-actin localizes along the length of stereocilia but re-distributes to sites of F-actin core disruptions resulting from animal exposure to damaging noise. In Actg1 ؊/؊ stereocilia similar disruptions are observed even without noise exposure. We conclude that ␥cyto-actin is required for reinforcement and long-term stability of F-actin-based structures but is not an essential building block of the developing cytoskeleton.actin ͉ cytoskeleton ͉ hearing T here are six genes encoding six vertebrate actins that are classified according to where they are predominately expressed. ␣ skeletal -Actin, ␣ smooth -actin, ␣ cardiac -actin, and ␥ smoothactin are primarily found in muscle cells, whereas cytoplasmic  cyto -actin and ␥ cyto -actin are ubiquitously and highly expressed in non-muscle cells, as reviewed elsewhere (1). Athough  cytoactin and ␥ cyto -actin differ at only four biochemically similar amino acid residues in their N-termini, several lines of evidence suggest that each protein is functionally distinct. The amino acid sequences of  cyto -and ␥ cyto -actin are each exactly conserved among avian and mammalian species. In addition,  cyto -and ␥ cyto -actin proteins are differentially localized (2-5) and posttranslationally modified (6). Finally, although dominant missense mutations in ACTB encoding  cyto -actin are associated with syndromic phenotypes including severe developmental malformations and bilateral deafness (7), humans carrying a variety of dominant missense mutations in ACTG1 develop postlingual nonsyndromic progressive hearing loss (DFNA20, OMIM 604717) (8-11).␥ cyto -Actin is widely expressed in the inner ear sensory epithelial cells on which mammalian hearing depends. These cells are organized in rows along the cochlea length: one row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs) (Fig. 2A). IHCs function as auditory receptors, converting sound energy into neuronal signals, whereas OHCs enhance sensitivity to sound stimuli, as reviewed elsewhere (12). The apical surface of a hair cell is topped with actin-rich microvilli-derived protrusions termed stereocilia, which deflect in response to sound stimuli, initiating mechanoelectrical transduction (Fig. 2B).  cyto -and ␥ cyto -Actin are both thou...