Because of environmental concerns, there is a growing interest in new ways to produce green energy. Among the several studied applications, enzymatic biofuel cells can be considered as a promising solution to generate electricity from biological catalytic reactions. Indeed, enzymes show very good results as biocatalysts thanks to their excellent intrinsic properties, such as specificity toward substrate, high catalytic activity with low overvoltage for substrate conversion, mild operating conditions like ambient temperature and near-neutral pH. Furthermore, enzymes present low cost, renewability and biodegradability. The wide range of applications moves from miniaturized portable electronic equipment and sensors to integrated lab-on-chip power supplies, advanced in vivo diagnostic medical devices to wearable devices. Nevertheless, enzymatic biofuel cells show great concerns in terms of long-term stability and high power output nowadays, highlighting that this particular technology is still at early stage of development. The main aim of this review concerns the performance assessment of enzymatic biofuel cells based on flow designs, considered to be of great interest for powering biosensors and wearable devices. Different enzymatic flow cell designs are presented and analyzed highlighting the achieved performances in terms of power output and long-term stability and emphasizing new promising fabrication methods both for electrodes and cells.