Wireless power transfer devices are becoming more relevant and widespread. Therefore, an article is devoted to a review, analysis and comparison of compensation topologies for an inductive power transfer. A new classification of topologies is developed. A lot of attention is paid to the problems of the physical fundamentals of compensation work, standards, safety, and five main topology requirements. It is determined, that topologies with the series primary compensating are the most effective in the IPT for charging devices among the four classical schemes. The series-parallel solution is recommended in case of the low output voltage, minimum size of a secondary side coil is achievable. The series-series solution does not depend on the magnetic coupling coefficient and the load on the resonance frequency. For the convenience of displaying and understanding the information, the comparison results are listed in the tables, graphs and dependencies. The main suitable topologies for a certain application are defined. The given conclusions provide a ''one-stop'' information source and a selection guide on the application of compensation topologies both in terms of devices and in terms of power level that is the main value of this paper. During literature analysis and recent trends in the market for wireless power transmission devices, the main possible further ways of developing topologies are underlined. First of all, it concerns increasing the frequency of resonance of compensation topologies, the use of multilevel / multi-pulse / multicoils structures, the study of existing high-frequency semiconductors and the development of the semiconductor and magnetic materials.