2022
DOI: 10.1051/e3sconf/202233600055
|View full text |Cite
|
Sign up to set email alerts
|

A New Maximum Power Point Tracking Based on Neural Networks and Incremental Conductance for Wind Energy Conversion System

Abstract: This work presents a new Maximum Power Point Tracking (MPPT) for the connection of the wind turbine system (WT) to the synchronous permanent magnet generator (PMSG). To search the maximum power of the wind turbine, we have proposed a new MPPT which combines two techniques: Artificial Neural Network (ANN) and incremental conductance (IncCond) method. The advantage of ANN-based WT model method is the fast MPP approximation base on the ability of ANN according the parameters of WT that used. The advantage of IncC… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 4 publications
0
1
0
Order By: Relevance
“…A unique INC technique known as fractional order INC (FO-INC) was introduced to address the issue of instability. To reduce excessive power losses, the MPPT is tracked using a variable step size for rapidly changing feasible wind conditions [55][56][57]. Table 4 highlights the advantages and the disadvantages of the previously discussed MPPT techniques.…”
Section: Incremental Conductance (Inc)-based Mppt Techniquementioning
confidence: 99%
“…A unique INC technique known as fractional order INC (FO-INC) was introduced to address the issue of instability. To reduce excessive power losses, the MPPT is tracked using a variable step size for rapidly changing feasible wind conditions [55][56][57]. Table 4 highlights the advantages and the disadvantages of the previously discussed MPPT techniques.…”
Section: Incremental Conductance (Inc)-based Mppt Techniquementioning
confidence: 99%
“…Por otra parte, enfatizando en las redes neuronales (NN), numerosos trabajos también aplican este enfoque (Karthik et al, 2020), (Raouf et al, 2023). Por mencionar casos específicos, en (Muñoz-Palomeque, et al, 2023) una red neuronal de base radial (RBNN) es aplicada en la regulación del torque del generador para alcanzar la velocidad requerida del sistema eólico; en (Chandrasekaran, et al, 2020) el control de la extracción de máxima potencia es solventado con una NN en cascada, o en (Tidhaf, 2022) una NN es combinada con el método de conductancia incremental para el control MPPT En este artículo, se hace uso de un controlador híbrido para operar en la región MPPT de un aerogenerador flotante de 5MW. El esquema de control directo de velocidad (DSC) es utilizado como el medio de cálculo de la velocidad referencial del generador.…”
Section: Introductionunclassified